Hessle High School Science Department

Physics Combined Foundation

This document will help you work with students to assess their understanding of the science curriculum for their exam. The students have their personal learning checklist from their mock exams. They need to revise these topics, then they can use these questions to test their understanding.

Paper 2

Question	Answer	Торіс
What is a scalar quantity?	It has magnitude (size) only. For example: time, voltage, energy.	P8.1 Vectors and scalars
What is a vector quantity?	It has a magnitude and a direction. For example: velocity, force, displacement.	P8.1 Vectors and scalars
We represent vectors with arrows. What do the length and direction of the arrow show?	The length represents the magnitude, and the direction shows the direction of the vector.	P8.1 Vectors and scalars
what is the difference between a vector quantity and a scalar quantity?	A vector quantity has both magnitude and direction whereas scalar only has magnitude	P8.1 Vectors and scalars
why is force a vector quantity?	Force is a vector because it has both magnitude and direction	P8.1 Vectors and scalars
Give examples of a vector	Force, velocity, acceleration, momentum, gravitational field strength, displacement	P8.1 Vectors and scalars
Give examples of a scalar quantity	time, distance, speed, mass	P8.1 Vectors and scalars
what is thrust?	a force that pushes something forwards	P8.2 Forces between objects
wat is air resistance/drag/friction?	a force that holds an object back and goes in the opposite direction to movement	P8.2 Forces between objects
what is newton's third law?	every action has an equal and opposite reaction.	P8.2 Forces between objects
what is the difference between a contact force and a non-contact force?	A contact force is between a pair of objects that are physically touching and in non-contact forces they are not touching	P8.2 Forces between objects
give examples of contact forces	friction, air resistance and tension	P8.2 Forces between objects
give examples of non-contact forces	gravitational force, magnetic force and electromagnetic force	P8.2 Forces between objects
What is a resultant force?	A number of forces acting on an object may be replaced by a single force that has the same effect as all the original forces acting together	P8.3 Resultant forces
What instrument do we use to measure weight?	A newton meter (a calibrated spring-balance)	P8.3 Resultant forces
Describe the movement of an object if the resultant force is zero	Object stays at rest or at same speed / direction	P8.3 Resultant forces
Describe the movement of an object if the resultant force is greater than zero	Object changes speed or direction	P8.3 Resultant forces

forces balance or unbalance?UnbalancedP8.3 Resultant forceswhat is the centre of mass?The position on an object where its mass is concentratedP8.6 Centre of massHow can we reduce the chance of an object falling over?A low centre of mass and a wide baseP8.6 Centre of masshow can we find the centre of mass of a symmetrical object?Draw the lines of symmetry and where they overlap is the centre of massP8.6 Centre of massWhat is distance?Distance is a scalar quantity that describes how far an object moves.P9.1 Speed and distance-time graphs	If the resultant force is greater than zero are the		
what is the centre of mass?The position on an object where its mass is concentratedP8.6 Centre of massHow can we reduce the chance of an object falling over?A low centre of mass and a wide baseP8.6 Centre of masshow can we find the centre of mass of a symmetrical object?Draw the lines of symmetry and where they overlap is the centre of massP8.6 Centre of masshow tar is distance?Distance is a scalar quantity that describes how far an object moves.P9.1 Speed and distance-time graphs	forces balance or unbalance?	Unbalanced	P8.3 Resultant forces
How can we reduce the chance of an object falling over?A low centre of mass and a wide baseP8.6 Centre of masshow can we find the centre of mass of a symmetrical object?Draw the lines of symmetry and where they overlap is the centre of massP8.6 Centre of massby back the distance?Draw the lines of symmetry and where they overlap is the centre of massP8.6 Centre of massWhat is distance?Distance is a scalar quantity that describes how far an object moves.P9.1 Speed and distance-time graphsdistance an object moves (straight line from start to finish) and the directionP9.1 Speed and distance-time	what is the centre of mass?	The position on an object where its mass is concentrated	P8.6 Centre of mass
over?A low centre of mass and a wide baseP8.6 Centre of masshow can we find the centre of mass of a symmetrical object?Draw the lines of symmetry and where they overlap is the centre of massP8.6 Centre of massWhat is distance?Distance is a scalar quantity that describes how far an object moves.P9.1 Speed and distance-time graphsdistance an object moves (straight line from start to finish) and the directionP9.1 Speed and distance-time	How can we reduce the chance of an object falling		
how can we find the centre of mass of a symmetrical object?Draw the lines of symmetry and where they overlap is the centre of massP8.6 Centre of massObject?Draw the lines of symmetry and where they overlap is the centre of massP9.1 Speed and distance-timeWhat is distance?Distance is a scalar quantity that describes how far an object moves.graphsdistance an object moves (straight line from start to finish) and the directionP9.1 Speed and distance-time	over?	A low centre of mass and a wide base	P8.6 Centre of mass
object? Draw the lines of symmetry and where they overlap is the centre of mass P8.6 Centre of mass What is distance? Distance is a scalar quantity that describes how far an object moves. P9.1 Speed and distance-time graphs distance an object moves (straight line from start to finish) and the direction P9.1 Speed and distance-time	how can we find the centre of mass of a symmetrical		
What is distance? Distance is a scalar quantity that describes how far an object moves. graphs distance an object moves (straight line from start to finish) and the direction P9.1 Speed and distance-time	object?	Draw the lines of symmetry and where they overlap is the centre of mass	P8.6 Centre of mass
What is distance? Distance is a scalar quantity that describes how far an object moves. graphs distance an object moves (straight line from start to finish) and the direction P9.1 Speed and distance-time			P9.1 Speed and distance–time
distance an object moves (straight line from start to finish) and the direction 1 P9.1 Speed and distance-time	What is distance?	Distance is a scalar quantity that describes how far an object moves.	graphs
		distance an object moves (straight line from start to finish) and the direction	P9.1 Speed and distance–time
What is displacement? (vector) graphs	What is displacement?	(vector)	graphs
P9.1 Speed and distance-time	Million to the end of the end of the end of the		P9.1 Speed and distance–time
What is the typical walking speed? 1.5 m/s	What is the typical walking speed?	1.5 m/s	graphs
P9.1 Speed and distance-time	Million to the constant of the second of the		P9.1 Speed and distance-time
What is the typical running speed? 3 m/s graphs D0.1 Greed and distance, time	what is the typical running speed?	3 m/s	graphs
P9.1 Speed and distance-time	What is the useral equation for coloulating encoder	anand – distance / time	P9.1 Speed and distance-time
what is the word equation for calculating speed? speed = distance / time graphs	What is the word equation for calculating speed?	speed = distance / time	graphs
How can speed be calculated from a distance-time	How can speed be calculated from a distance-time	The gradient	graphs
graphic rife gradient graphic			graphs
How is velocity different from speed? Velocity is speed in a given direction. P9.2 Velocity and acceleration	How is velocity different from speed?	Velocity is speed in a given direction.	P9.2 Velocity and acceleration
What is the word equation for acceleration?acceleration = change in velocity / timeP9.2 Velocity and acceleration	What is the word equation for acceleration?	acceleration = change in velocity / time	P9.2 Velocity and acceleration
What are the units of acceleration?m/s2P9.2 Velocity and acceleration	What are the units of acceleration?	m/s2	P9.2 Velocity and acceleration
what is velocity?the speed something is travelling in a certain directionP9.2 Velocity and acceleration	what is velocity?	the speed something is travelling in a certain direction	P9.2 Velocity and acceleration
What piece of equipment can be used to measureP9.1 Speed and distance-time	What piece of equipment can be used to measure		P9.1 Speed and distance-time
distance? Ruler, trundle-wheel graphs	distance?	Ruler, trundle-wheel	graphs
What piece of equipment can be used to measure P9.1 Speed and distance-time	What piece of equipment can be used to measure		P9.1 Speed and distance-time
time? Stopwatch, light gates graphs	time?	Stopwatch, light gates	graphs
what is acceleration?the change in an object's velocity per secondP9.4 Analysing motion graphs	what is acceleration?	the change in an object's velocity per second	P9.4 Analysing motion graphs
how do you calculate acceleration m/s2? Change in velocity (m/s) / time taken P9.4 Analysing motion graphs	how do you calculate acceleration m/s2?	Change in velocity (m/s) / time taken	P9.4 Analysing motion graphs
What is the word equation for uniform acceleration?final velocity2 - initial velocity2 = 2 x acceleration x distanceP9.4 Analysing motion graphs	What is the word equation for uniform acceleration?	final velocity2 - initial velocity2 = 2 x acceleration x distance	P9.4 Analysing motion graphs
An object at rest will remain at rest and a moving object will continue		An object at rest will remain at rest and a moving object will continue	
State Newton's First Law: moving at constant velocity as long as no resultant force acts on the object. P10.1 Force and acceleration	State Newton's First Law:	moving at constant velocity as long as no resultant force acts on the object.	P10.1 Force and acceleration
What is needed for velocity of an object to change? An unbalanced/resultant force P10.1 Force and acceleration	What is needed for velocity of an object to change?	An unbalanced/resultant force	P10.1 Force and acceleration
The acceleration of an object is proportional to the resultant force acting on		The acceleration of an object is proportional to the resultant force acting on	
State Newton's Second Law: P10.1 Force and acceleration	State Newton's Second Law:	the object, and inversely proportional to the mass of the object	P10.1 Force and acceleration

What is the word equation for Newton's Second Law?	force = mass x acceleration	P10.1 Force and acceleration
	F =ma . The lighter the car the less force is needed to achieve the greatest	
why are formula 1 cars designed to be so light?	acceleration and therefore the greatest speed	P10.1 Force and acceleration
What is the word equation that links resultant force		
(f), mass (m) and acceleration (a)	Resultant = mass x acceleration	P10.1 Force and acceleration
		P10.2 Weight and terminal
how do we calculate weight?	weight (N) = mass (kg) x gravitational field strength (N/kg)	velocity
		P10.2 Weight and terminal
what is the gravitational field strength on earth	10N/kg	Velocity
what is the acceleration of free fall?	how fast a falling object accelerates due to gravity	P10.2 Weight and terminal
		P10.2 Weight and terminal
what value does acceleration of free fall have?	10m/s2	velocity
	mass is the amount of matter of an object. Weight is a force caused by	P10.2 Weight and terminal
what is the difference between mass and weight?	gravitational field strength.	velocity
	Weight is the force that acts downwards on a falling object due to gravity.	P10.2 Weight and terminal
what forces act on a falling object	Air resistance is the force that resists downwards movement	velocity
	1. air resistance -forces are unbalanced = acceleration. 2. weight stays the	,
describe fully the forces acting on a falling apple and	same, but air resistance increases until = forces are balanced.3. steady speed	P10.2 Weight and terminal
the effect that has on its motion	because the resultant force is zero	velocity
what happens to the size of the air resistance force as	As speed increases this causes force of air resistance to increase until	P10.2 Weight and terminal
speed increases?	terminal velocity reached.	velocity
	An object falling through a fluid initially accelerates due to the force of	
What is terminal velocity?	gravity. Eventually the resultant force will be zero and the object will move	P10.2 Weight and terminal
	driver's reaction time (thinking distance) + distance it travels under the	
What is the stopping distance of a vehicle?	braking force (braking distance).	P10.3 Forces and braking
How does stopping distance change with speed of the		
vehicle?	The greater the speed of the vehicle, the greater the stopping distance.	P10.3 Forces and braking
What is a typical human reaction time?	0.2 - 0.9 s	P10.3 Forces and braking
	Tiredness, drugs and alcohol. Distractions may also affect a driver's ability to	
What can affect a driver's reaction time?	react.	P10.3 Forces and braking
What physical changes to the vehicle happen when	Work done by the friction force (brakes + wheel) temperature of the brakes	
brakes are applied?	increases.	P10.3 Forces and braking
what two factors make up stopping distance?	Thinking distance and braking distance	P10.3 Forces and braking
what is thinking distance?	how far you travel between detecting the hazard and hitting the brakes	P10.3 Forces and braking

what is braking distance?	How far you travel after applying the brakes	P10.3 Forces and braking
what factors affect braking distance?	Speed, the road conditions and the mass of the vehicle	P10.3 Forces and braking
	the difference between the original length of the spring and its length when	
what is the extension of a spring?	being stretched	P10.8 Forces and elasticity
what does elastically deformed mean?	when an object returns to its original length after being extended and the force has been removed	P10.8 Forces and elasticity
	When an object does not return to its original shape after the force has been	/
what does inelastically deformed mean?	removed	P10.8 Forces and elasticity
Why are some objects described as plastic?	Because they can be inelastically deformed	P10.8 Forces and elasticity
	The extension of a spring is directly proportional to the force applied, as long	
what is Hooke's law?	as the limit of proportionality is not exceeded	P10.8 Forces and elasticity
what is Hooke's law formula?	Force applied (N) = spring constant (N/m) x distance (m)	P10.8 Forces and elasticity
how do you calculate elastic potential energy?	0.5 x spring constant x extension2	P10.8 Forces and elasticity
	The extension of an elastic object, such as a spring, is directly proportional to	
What is Hooke's Law?	the force applied, provided that the limit of proportionality is not exceeded.	P10.8 Forces and elasticity
What is the word equation for Hooke's Law?	force = spring constant x extension	P10.8 Forces and elasticity
What are the units of spring constant?	N/m	P10.8 Forces and elasticity
How can we apply the equation to compression of an		
elastic object?	The relationship is the same, where "e" is in compression of the object.	P10.8 Forces and elasticity
What is electic potential energy related to?	A force that stretches (or compresses) a spring does work and elastic	P10.9 Foress and electicity
what is elastic potential energy related to?	potential energy is stored in the spring.	P10.8 Forces and elasticity
When work is done to stretch a spring, how much	Provided that the spring is not inelastically deformed, the work done on the	
elastic potential energy is stored?	spring and the elastic potential energy stored are equal.	P10.8 Forces and elasticity
ANTENE IC TENTA ANTENE ANTENE CARACTERIZATION AND AND AND ANTENE ANTENA ANTENE ANTEN		
energy?	elastic potential energy = 0.5 x spring constant x extension2	P10.8 Forces and elasticity
energy? How can the spring constant be extracted from this	elastic potential energy = 0.5 x spring constant x extension2	P10.8 Forces and elasticity
energy? How can the spring constant be extracted from this graph?	elastic potential energy = 0.5 x spring constant x extension2 The spring constant is equal to the gradient of the graph.	P10.8 Forces and elasticity P10.8 Forces and elasticity
How can the elastic potential energy be extracted How can the elastic potential energy be extracted	elastic potential energy = 0.5 x spring constant x extension2 The spring constant is equal to the gradient of the graph.	P10.8 Forces and elasticity P10.8 Forces and elasticity
 what is the word equation for elastic potential energy? How can the spring constant be extracted from this graph? How can the elastic potential energy be extracted from this graph? 	elastic potential energy = 0.5 x spring constant x extension2 The spring constant is equal to the gradient of the graph. The area under the graph.	P10.8 Forces and elasticity P10.8 Forces and elasticity P10.8 Forces and elasticity
 what is the word equation for elastic potential energy? How can the spring constant be extracted from this graph? How can the elastic potential energy be extracted from this graph? In the required practical related to Hooke's Law, why should the extension of the spring he 0 m when he 	elastic potential energy = 0.5 x spring constant x extension2 The spring constant is equal to the gradient of the graph. The area under the graph. With no force applied, the spring is unstratched so has no extension. Any	P10.8 Forces and elasticity P10.8 Forces and elasticity P10.8 Forces and elasticity
 what is the word equation for elastic potential energy? How can the spring constant be extracted from this graph? How can the elastic potential energy be extracted from this graph? In the required practical related to Hooke's Law, why should the extension of the spring be 0 m when no force is applied? 	elastic potential energy = 0.5 x spring constant x extension2 The spring constant is equal to the gradient of the graph. The area under the graph. With no force applied, the spring is unstretched so has no extension. Any other value would be a measurement of length not extension	P10.8 Forces and elasticity P10.8 Forces and elasticity P10.8 Forces and elasticity P10.8 Forces and elasticity
 what is the word equation for elastic potential energy? How can the spring constant be extracted from this graph? How can the elastic potential energy be extracted from this graph? In the required practical related to Hooke's Law, why should the extension of the spring be 0 m when no force is applied? What are the two types of wayes? 	elastic potential energy = 0.5 x spring constant x extension2 The spring constant is equal to the gradient of the graph. The area under the graph. With no force applied, the spring is unstretched so has no extension. Any other value would be a measurement of length, not extension.	P10.8 Forces and elasticity P10.10 Forces and elasticity
 what is the word equation for elastic potential energy? How can the spring constant be extracted from this graph? How can the elastic potential energy be extracted from this graph? In the required practical related to Hooke's Law, why should the extension of the spring be 0 m when no force is applied? What are the two types of waves? 	elastic potential energy = 0.5 x spring constant x extension2 The spring constant is equal to the gradient of the graph. The area under the graph. With no force applied, the spring is unstretched so has no extension. Any other value would be a measurement of length, not extension. Longitudinal and transverse. Oscillations are at right angles to the direction of energy travel	P10.8 Forces and elasticity P12.1 The nature of waves P12.1 The nature of waves
 what is the word equation for elastic potential energy? How can the spring constant be extracted from this graph? How can the elastic potential energy be extracted from this graph? In the required practical related to Hooke's Law, why should the extension of the spring be 0 m when no force is applied? What are the two types of waves? Describe a transverse wave. 	elastic potential energy = 0.5 x spring constant x extension2 The spring constant is equal to the gradient of the graph. The area under the graph. With no force applied, the spring is unstretched so has no extension. Any other value would be a measurement of length, not extension. Longitudinal and transverse. Oscillations are at right angles to the direction of energy travel.	P10.8 Forces and elasticity P10.1 The nature of waves P12.1 The nature of waves P12.1 The nature of waves

What is the amplitude of a wave?	The maximum height of the wave from the centre line.	P12.1 The nature of waves
	The distance from one point on a wave to the same point on the next wave.	
What is the wavelength of a wave?	E.g. peak to peak or trough to trough.	P12.1 The nature of waves
What is the unit of wavelength?	Metres	P12.1 The nature of waves
Describe a longitudinal wave.	Oscillations are along the same direction as the direction of travel.	P12.1 The nature of waves
What is an example of a longitudinal wave?	Sound	P12.1 The nature of waves
What is an area of compression on a longitudinal		
wave?	Where the waves are close together.	P12.1 The nature of waves
What is an area of rarefaction on a longitudinal wave?	Where the waves are far apart.	P12.1 The nature of waves
What is the frequency of a wave?	The number of waves per second.	P12.2 The properties of waves
What is the unit of frequency?	Hertz (Hz)	P12.2 The properties of waves
What is the equation for wave speed?	Wave speed = frequency x wavelength	P12.2 The properties of waves
what do all waves transfer?	energy	P12.4 More about waves
Through what state does sound travel the fastest?	Solid	P12.4 More about waves
Why can't you hear a scream in space	Sound needs a medium to travel	P12.4 More about waves
In the waves on a string practical - what would		
happen to the wavelength as you increase the		
frequency?	Length decreases	P12.4 More about waves
		P13.1 The electromagnetic
What type of waves are electromagnetic waves?	Transverse	spectrum
List the electromagnetic waves in order of increasing	Radio waves, microwaves, infrared, visible light, ultraviolet, x-rays, gamma	P13.1 The electromagnetic
frequency	rays	spectrum
Electromagnetic waves transfer energy from a		P13.1 The electromagnetic
to an	Source Absorber	spectrum
What part of the electromagnetic spectrum has the		P13.1 The electromagnetic
shortest wavelength	Gramma waves	spectrum
What part of the electromagnetic spectrum do our		P13.1 The electromagnetic
eyes detect?	Our eyes only detect visible light.	spectrum
		P13.1 The electromagnetic
What speed do all electromagnetic waves travel at?	3.0x10^8 m/s	spectrum
What is the equation that links Frequency wavelength		P13.1 The electromagnetic
and speed	wave speed = frequency x wavelength	spectrum
		P13.1 The electromagnetic
What is the speed of electromagnetic radiation?	300 000 m/s	spectrum
What is the EM radiation with the longest		P13.1 The electromagnetic
wavelength?	Radio	spectrum

		P13.1 The electromagnetic
What is the EM radiation with the highest frequency?	Gamma	spectrum
		P13.1 The electromagnetic
What is the EM radiation with the lowest frequency?	Radio	spectrum
		P13.1 The electromagnetic
List the EM spectrum from long to short wavelength.	Radio, microwave, infrared, visible, UV, X-rays, gamma	spectrum
		P13.1 The electromagnetic
Can EM waves travel through space?	yes	spectrum
White light contains all the colours of the spectrum?		P13.2 Light, infrared,
T/F	TRUE	microwaves, and radio waves
What part of the EM spectrum is used for fibre optic		P13.2 Light, infrared,
communications?	Visible light	microwaves, and radio waves
		P13.2 Light, infrared,
Name an example of a use of Infrared radiation?	Electrical heaters, cooking food, infrared cameras	microwaves, and radio waves
		P13.2 Light, infrared,
Why are microwaves used for satellite TV?	Microwaves pass through the ionosphere to reach stellates	microwaves, and radio waves
		P13.2 Light, infrared,
Which EM wave do all objects emit and absorb?	Infrared radiation. The hotter the object the more radiation it emits.	microwaves, and radio waves
What are carrier waves?	Waves used to carry a signal	P13.3 Communications
What are the uses of microwaves?	satellite communications, cooking food	P13.3 Communications
what are produced by oscillations in electrical circuits.	Radio waves	P13.3 Communications
Mobile phones use what type of EM wave?	Radio waves	P13.3 Communications
		P13.4 Ultraviolet waves, X-rays,
Which radiation is used in sun tanning?	UV	and gamma rays
		P13.4 Ultraviolet waves, X-rays,
Give one use of X-rays.	Medical imaging	and gamma rays
		P13.4 Ultraviolet waves, X-rays,
Give one use of gamma rays	Medical treatments	and gamma rays
		P13.4 Ultraviolet waves, X-rays,
Why are X-rays good for taking images of bone?	absorbed by bone but transmitted through soft tissue	and gamma rays
		P13.4 Ultraviolet waves, X-rays,
Why are gamma rays used in medical treatment?	Can kill cancer cells	and gamma rays
		P13.4 Ultraviolet waves, X-rays,
What are the risks of exposure to UV radiation?	Premature skin aging, increased risk of skin cancer	and gamma rays
		P13.4 Ultraviolet waves, X-rays,
What are the risks of exposure to gamma rays?	Gamma rays are ionising so can cause mutations which may result in cancer	and gamma rays

What factors effect whether an EM wave will damage		P13.4 Ultraviolet waves, X-rays,
the body?	The type of EM wave and the dosage.	and gamma rays
Which EM waves can have hazardous effects on the		P13.4 Ultraviolet waves, X-rays,
human body?	Gamma, x-ray, ultraviolet.	and gamma rays
What damage can x-ray, and gamma waves have to	They can ionise atoms causing mutations of genes which could lead to	P13.4 Ultraviolet waves, X-rays,
the body?	cancer.	and gamma rays
When will two magnets attract?	When the poles are opposite.	P15.1 Magnetic fields
When will two magnets repel?	When the poles are the same.	P15.1 Magnetic fields
What is a permanent magnet?	A magnet that produces its own magnetic field.	P15.1 Magnetic fields
What is an induced magnet?	A magnetic material that is only a magnet when placed in a magnetic field.	P15.1 Magnetic fields
What materials are magnetic?	Iron, nickel, cobalt and steel.	P15.1 Magnetic fields
Do induced magnets attract, repel or both?	Attract only.	P15.1 Magnetic fields
	The area around a magnet where it can act on another magnet or magnetic	
What is a magnetic field?	material.	P15.1 Magnetic fields
Where is a magnet the strongest? Why?	At the poles as this is where the field lines are concentrated.	P15.1 Magnetic fields
	The needle is a permanent magnet so points towards the magnetic South	
How does a compass work?	pole (near the geographical North pole).	P15.1 Magnetic fields
What factors affect the strength of a magnetic field		P15.2 Magnetic fields of electric
around a wire?	The current and the distance from the wire.	currents
	Using the right-hand rule- thumb pointing towards the negative terminal of	
How can you determine the direction of a magnetic	the battery. Curl hand around the wire- this is the direction of the field from	P15.2 Magnetic fields of electric
field around a wire?	North to South.	currents
		P15.2 Magnetic fields of electric
What is a solenoid?	Conductive wire that has been coiled.	currents
Which will have a stronger magnetic field- a wire or a		P15.2 Magnetic fields of electric
solenoid?	A solenoid.	currents
		P15.2 Magnetic fields of electric
Describe the magnetic field inside a solenoid.	Strong and uniform.	currents
		P15.2 Magnetic fields of electric
Describe the magnetic field around a solenoid.	Shaped like the magnetic field around a bar magnet.	currents
		P15.2 Magnetic fields of electric
What is an electromagnet?	A solenoid with an iron core.	currents
Which will have a stronger magnetic field- an		P15.2 Magnetic fields of electric
electromagnet or a solenoid?	An electromagnet.	currents
		P15.2 Magnetic fields of electric
What type of magnet is an electromagnet? Why?	Induced as it will not keep its magnetic field once the current is removed.	currents